GaN-based power converters

K I I

00

11

Mastering GaN power conversion with field-proven expertise

Prototype of GaN converter for electric drive

ISIT

Fraunhofer

GaN technology is revolutionizing the automotive and charging infrastructure industries. Thanks to their improved conduction and switching capabilities, GaN transistors are set to spur greater performance and efficiency in low- to mediumpower conversions. Leverage the power of GaN and make the most of the cutting-edge power conversion solutions available today.

Fraunhofer ISIT brings an unmatched expertise in power conversion from design to testing:

- Converter design, from the device to the application
- Multiphysical simulation
- Prototyping
- Wideband electrical testing and characterization
- Reliability analysis

GaN-specific topology to cut losses at light load

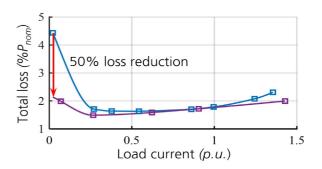
UPS

GaN enables new topologies

Key attributes & industry requirements

Datacom & Telecom

High efficiency over wide power	
level range	
High density using a limited	
footprint	
Wide-bandwidth control,	
envelope tracking	


010
High efficiency enabling lower
operating costs
Low loss backup-source
integration
Low footprint

Key advantages of GaN-based power converters:

- High efficiency, limited cooling requirements
- High power density
- High power quality, reduced filtering needs
- High control bandwidth

Power converter design @Fraunhofer ISIT:

- GaN-specific topologies, optimized for battery integration
- Isolated and non-isolated structures
- Custom magnetics: conventional, planar, and embedded
- Device-to-system-level modeling and robustness analysis
- Reliability-oriented design and control

Power loss reduction with GaN based auxillary circuit

E-mobility	Drives incl. battery
Efficiency enabling range	High switching frequency for
extension	precision positioning
Light weight	Compactness, light weight
Adapted to multiple use cases	Ultra-high efficiency
(E-bike, on-board charger	with battery integration
& MH EV)	Low noise, reduced filtering

Highly efficient and reliable electronic energy systems

Applied research from device- to network-level power electronics made in Northern Germany

What we can do for you @Fraunhofer ISIT

Active reliability

- Sensor integration
- Lifetime analysis
- Reliability-driven control
- Multichip power modules

Hybrid grids

- Medium voltage DC applications
- New components
- Grid forming converters

Battery integration

- Charging stations
- Grid support
- Bidirectional power transfer

Fraunhofer Institute for Silicon Technology ISIT

Fraunhoferstr. 1 25524 Itzehoe, Germany

ISIT@CAU Kaiserstr. 4 24143 Kiel, Germany

Head of Electronic Energy Systems Prof. Dr.-Ing. Marco Liserre marco.liserre@ isit.fraunhofer.de

www.isit.fraunhofer.de/ees

