

CHALLENGES FOR HIGH-FREQUENCY ULTRASONIC CLEANING SYSTEMS

EUROPEAN CMP USERS MEETING

NOVEMBER 2022

The Silicon Wafer

KAIJO CORPORATION

EKAIJO is a manufacturer of ultrasonic cleaning equipment.

Established : July 21, 1948

Tokyo, Hamura-city (Headquarters) Location

Nagano, Matsumoto-city (Factory)

Employees : 293 (2022)

: JPY90M (USD\$0.82M) Paid-in Capital

Parent Company Shibuya Corporation

Semiconductor Assembling Equipment, **Main Business**

Ultrasonic Cleaning Equipment,

OEM/ODM business.

Kaijo Shibuya Europe : Wiesbaden, Germany (KSE)

(Established in October 2018)

Ultrasonic Cleaning Equipment

Specialized equipment for wafer cleaning after the polishing process

Supplies ultrasonic cleaning tools to CMP equipment manufacturers

CMP Equipment
Makers, China

China Market

Ultrasonic Cleaning Equipment

Specialized equipment for wafer cleaning after the polishing process

Supplies ultrasonic cleaning tools to CMP equipment manufacturers

CMP Equipment Maker, Japan **Shower Type** 950*kHZ* 3MHz 950*kHz* **Worldwide Market**

KAIJO QUAVA SPOT Shower

Ultrasonic Cleaning Tool for a Single Wafer

Ultrasonic Generator

The ultrasonic energy passing through the DI water detaches the particles adhering at the wafer surface.

QUAVA SPOT Shower Transducer

Technology Node Timeline

Semiconductor lithography processes technology

A more rigorous cleaning process
 is required from 7nm node

Silicon Wafer Particle Removal

- CMP-induced defects caused by residual particles, foreign materials, scratches, corrosion, etc.
- Cleaning after CMP has become a crucial step in the process of wafer manufacturing to minimize defects such as residual particles, foreign materials, scratches and corrosion.
- Defects generated after the CMP process, especially particles on the wafer surface, can be removed with Megasonic cleaning.
- Megasonic cleaning removes particles on the wafer surface more effectively than chemical methods.

No defect generation High-quality wafer output

Ultrasonic Wafer Cleaning by Spot Shower

Equipment used

- QUAVA SPOT Shower Transducer.
- Ultrasonic output power of 30W.
- Working frequency of 950KHz and 3MHz.

Ultrasonic cleaning conditions

- Ultrasonic cleaning of bare wafer.
- Particles to be removed SiO_2 (≥80nm).
- Wafer spinning of 400rpm.
- DI water as cleaning liquid $(2^{L}/_{min})$.
- Cleaning time of 30s (6 sets of 5s).

Particle Removal Efficiency

$$PRE(\%) = \frac{n_i - n_f}{n_i} \times 100$$

where

n = Number of particles

 $n_i = n_{After\ adding\ SiO_2} - n_{Before\ adding\ SiO_2}$

 $n_f = n_{After\ ultrasonic\ cleaning} - n_{Before\ adding\ SiO_2}$

Ultrasonic cleaning scheme

Ultrasonic cleaning results (MAP)

SPOT Shower 950kHz/30W PRE of 90.4%

SPOT Shower 3*MHz*/30*W* PRE of 24.5%

New Spot Shower Design

Parabolic Reflexional High Power (PRHP)
Ultrasonic Transducer

- Designed for high frequency cleaning
- High sound pressure
- Damage reduction

Challenge to efficiently remove nanoparticles without damaging the wafer surface

Ultrasonic Wafer Cleaning by PRHP

Equipment used

- Parabolic Reflexional High Power Transducer.
- Ultrasonic output power of 34.1W.
- Working frequency of 1.5MHz.

Ultrasonic cleaning conditions

- Ultrasonic cleaning of bare wafer.
- Wafer spin of 60*rpm*.
- DI water as cleaning liquid $(1^{L}/_{min})$.
- Cleaning time of 60s (6 sets of 10s).

Particle Removal Efficiency

$$PRE(\%) = \frac{n_i - n_f}{n_i} \times 100$$

where

n = Number of particles

 $n_i = n_{After\ adding\ SiO_2} - n_{Before\ adding\ SiO_2}$

 $n_f = n_{After\ ultrasonic\ cleaning} - n_{Before\ adding\ SiO_2}$

DIW

Flow: $1^L/_{min}$

Temperature: 23.7 ° C

DO: $6.88^{mg}/_{L}$

PRHP 1.5*MHz*/34.1*W* PRE of 37%

New Spot Shower development schedule

September 2022

Complete preliminary tests and determine the basic construction of the transducer.

December 2022

Finalize the design of the transducer unit.

March 2023

Complete development and accumulate evaluation data for sales promotion.

Thank you for your attention

